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The problem of semi-infinite potential flow past a sinusoidal wall is solved by direct 
variation. The direct variation proceeds from the theorem of Kelvin that states that potential 
flows in simply connected domains possess a minimum kinetic energy. The difftculties due to 
the semi-infinite domain are discussed and resolved. Trial functions which are natural 
solutions of the field equation and the far-field boundary condition, and which satisfy the 
periodicity of the flow are used. The resulting system of linear equations becomes ill-con- 
ditioned as the wall height and number of trial solutions are increased, but accurate 
evaluations of streamlines and field velocities for wall heights up to 0.9 are found by using 
established numerical methods. (0 1987 Academic Press, Inc. 

1. INTRODUCTION 

The problem of semi-infinite potential flow past a sinusoidal wall is familiar to 
most every applied mathematician. It is a model problem of the regular pertur- 
bation type and it is in this context that many students of applied mathematics first 
encounter it. Until recently the most thorough treatment of this problem had been 
that of Kaplan [ 11. He had chosen the problem so as to discuss two common 
iteration techniques used at the time. He pursued the regular perturbation series in 
infinitesimal wall height by calculating by hand several higher-order corrections. He 
also reduced the problem to solving a nonlinear integral equation similar to that of 
Theodorsen and Garrick [2]. 

This problem has also been solved using the more modern approach of numerical 
methods, in particular, the finite element method. Baker and Manhardt [3] have 
published solutions for some wall heights and Lawkins [4] has completed a study 
of the accuracy and convergence of the finite element technique as it has been 
applied to this problem. Some of this material is readily available in the book by 
Baker [S]. The solution that appears there is for a very small wall height and the 
authors judge the accuracy of their solution by comparing it with the analytic 
solution for the infinitesimal wall, i.e., a solution that is linear in wall height. They 
find that by using 64 biquadratic elements they get excellent convergence and 
accuracy for a wall height wavelength ratio of 0.025. 

The author [6] recently published a solution using the regular perturbation 
462 

0021-9991/87 $3.00 
Copyright 4) 1987 by Academuz Press, Inc. 
All rights of reproduction m any form reserved 



POTENTIALFLOW PASTAWAVYWALL 463 

technique where the series had been carried out to fiftieth order by computer. 
Although this method produced very accurate answers for velocities for wall heights 
up to and beyond any reasonable physical limit, it is not a convenient method by 
which to pursue many different field velocities or streamlines for it requires the 
storage and manipulation of hundreds of coefficients. For example, a solution with 
50 powers of the nondimensional wall height requires 600 coefficients. The 
manipulation of these coefficients to produce field velocities requires care, and the 
series solution does not provide a straight forward way to produce streamlines. 
Because of these difficulties an alternative approach involving fewer computed 
quantities was attempted. The method chosen was that of direct variation. 

In the case of potential flows there are variational principles dating back to 1849, 
when Lord Kelvin stated, “The irrotational motion of a liquid occupying a simply 
connected region has less kinetic energy than any other motion consistent with the 
same normal motion of the boundary.” This statement and its proof can be readily 
found in the popular classic by Lamb [7]. Much later variational principles for 
compressible potential flow and free-surface gravity potential were found by 
Bateman [S] and Luke [9], respectively. In light of the details of these latter prin- 
ciples it can be said that it is pressure being extremized in all of these potential 
flows. In the case of the incompressible flow without a free surface the pressure and 
kinetic energy sum to a constant by Bernoulli’s equation, and thus Kelvin’s 
statement is true. Although these variational principles have existed for over a hun- 
dred years they are just recently enjoying widespread use as the backbone of many 
numerical methods. 

In the present problem of flow past a sinusoidal wall there is a slight difficulty in 
implementing Kelvin’s principle. Here, even though the domain is simply connec- 
ted, it is infinite in extent. The kinetic energy is thus also infinite and the variational 
procedure is asked to minimize something that is fixed as infinite. This difficulty 
may be dealt with in two steps. First, reconize that the flow is periodic in the direc- 
tion along the wall and therefore to minimize over one period is to minimize over 
the whole range. Second, seek to minimize the “perturbation” kinetic energy, that 
being the total kinetic energy minus the kinetic energy of the free stream. 

2. SOLUTION BY DIRECT VARIATION 

The nondimensional mathematical problem to be solved is this: Let the x com- 
ponent of the velocity u and the y component of the velocity u be given as: 

u=l+@,, (1) 
v=@ “9 (2) 

where @ is the perturbation velocity potential. Given that the wall is y = E cos x and 
that the velocity tends to a uniform stream as y --) cc, one must solve this problem; 
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V2@ = 0, --cO<X<co,COSX<y<m, (3) 

@, + CD, E sin x + E sin x = 0, y = E cos x, -CO~X~CO, (4) 

CD,+0 as y-+00, --ar,Ix<oo. - - (5) 

In view of the previous comments I proceed by defining the quantity to be 
minimized J as 

J= * 
I s ~~ c:,,, Ct(~‘+~~)-Wydx. (6) 

A derivation of the governing equations from this quantity may be found in Appen- 
dix A. 

Here a direct variational or Rayleigh-Ritz method will be used to approximate 
the solution. A finite sum of trial functions will be substituted into the expression 
for J, the integration will be performed, and then the variation will be taken. As 
trial functions exact solutions of the field equation and the far-field boundary con- 
dition will be used. In specific let: 

@= f A,eC”“sinnx. 
n=l 

Assuming that the series for @ is adequately convergent such that the sum- 
mations may be moved outside the integration the expression for J is 

(7) 

J= i f A,,Ais.( -l)“~~‘nI,~,((n+i)E) 
u-1 i=l 

where Zk(t) is the modified Bessel function of the first kind of order k. The 
recurrence formula for Ik( t), 

(9) 

has been used in deriving Eq. (8). 
The first variation of J may be accomplished by setting all derivatives with 

respect to A, equal to zero, thus 

i3J 
dA,‘O, n = 1, 2,..., N (10) 
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and these being zero imply 

~f,~i~,(-l)‘Z~~j((.+i)~)= -Zn(n&)/H, n=l,2,...,N, 

where the relationship 

r-,,(r) = I,(f) 

has been used. 

(11) 

(l-2) 

The direct variational method has reduced the problem to solving N linear 
equations with N unknowns. The set of Eqs. (11) were modified to control the size 
of the matrix coefficients. Since the modified Bessel functions Z,(t) grow exponen- 
tially with argument, the nth equation was divided by enc and a new quantity was 
defined by 

An = ( - 1 )” B, e”‘. (13) 

3. COMPUTER IMPLEMENTATION AND RESULTS 

The solution of this linear system of equations requires the accurate evaluation of 
the products m(t) eP’. This was accomplished by the method of Lentz [lo]. This 
method is based on the theory of continued fractions and is both very accurate and 
computationally efficient. The method requires an externally accurate evaluation of 
lo(t) e-‘. This was acquired by using the ascending series and asymptotic expan- 
sions for this quantity which can be found in Abramowitz and Stegun [l 11. The 
number of terms and the regions of use were chosen such that lo(t) e--’ could be 
evaluated with an error of the order of 10-12. 

The linear system was solved on a DEC8600 machine using double precision 
Gaussian elimination with partial pivoting and iterative quadruple precision 
refinement. The program used also produced an estimate of the number of accurate 
digits in the solution. By this estimate the ill-conditioning of the system was easily 
discerned. As 8 and N were increased the system became ill-conditioned. That is, the 
larger E the more rapidly the symptoms of ill-conditioning appeared with increasing 
N. Numerous attempts were made to improve the condition number of the matrix 
and although some were succesful none actually resulted in solutions that were 
significantly more accurate. 

For a=O.l, N was chosen to be 10 and the number of accurate digits was 
estimated to be 15. This choice resulted in a smallest coefficient being less than 
10-i’. For E = 0.3, N was chosen to be 15 and still the number of accurate digits 
was estimated to be 15. For E = 0.6 and 0.9, N was chosen to be 22 and 16 respec- 
tively. In both of these cases, the criteria for choosing N was that it should be the 
largest value for which the computer program estimated the number of accurate 
digits in the solution to be no less than 10. Table I contains these coefficients. 
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TABLE I 

Coefficients for the Streamfunction 

II &=o.l &=0.3 E = 0.6 E = 0.9 

0 

2 
3 
4 
5 
6 
7 
8 
9 

IO 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

0.4987557419 - 02 
0.1001254661 00 
0.5020862022 - 02 
0.3775322039 - 03 
0.3364330364 - 04 
0.3293746312 - 05 
0.3423528843 - 06 
0.3709054364 - 07 
0.4141635512-08 
0.4703 160863 - 09 
0.4845740643 - IO 

0.4402733222 - 01 
0.3034833934 00 
0.4670865345 - 01 
0.1075247732 - 01 
0.2932606066 - 02 
0.8786212955 -03 
0.2794614980 - 03 
0.92648 17830 - 04 
0.3166211899-04 
0.1107079957 - 04 
0.3933096717 - 05 
0.1401907775 -05 
0.4852228549 - 06 
0.1510676928-06 
0.36285 18207 - 07 
0.4807980572 - 08 

0.1660410017 00 
0.6300460933 00 
0.2083987735 00 
0.1024639890 00 
0.5963019949 - 01 
0.3810133459-01 
0.2581523929 -01 
0.1815727456-01 
0.1300427230 - 01 
0.9238796957 - 02 
0.6241350866 - 02 
0.3722319963 - 02 
0.1649408223 - 02 
0.1415210118-03 

-0.6967151598-03 
-0.9169574347 - 03 
-0.7403585728 - 03 
-0.4384895937 - 03 
-0.1958719479 - 03 
-0.6485005824 - 04 
-0.1510059439-04 
-0.2214152129 -05 
- 0.1540649658 - 06 

0.3443170190 00 
0.1010285845 01 
0.5564448302 00 
0.4479180510 00 
0.4137623025 00 
0.3954868381 00 
0.3654215687 00 
0.3101727747 00 
0.2326034633 00 
0.1494163173 00 
0.8003611217 - 01 
0.3480451496 - 01 
0.1190923985 - 01 
0.3074840630 - 02 
0.5616464720 - 03 
0.6456650628 - 04 
0.3507968934 -05 

Having the coellicients of cb one naturally has the coefficients of the stream 
function Y, where 

Y=y--A,- 2 A,,6*-“cosnx (14) 
n=l 

and A0 is the value of Y on the wall. The value of A, was determined by taking an 
average of YJ at 32 evenly spaced points on the wall over one period. It is therefore 
straightforward to compute the streamlines of the flow using some simple root 
solver. In this case a modified regula falsi method, often called the Illinois 
algorithm [12], was used. 

Figures l-4 are plots of streamlines for wall heights E = 0.1, 0.3, 0.6, and 0.9, 
respectively. As can be seen these truncated series produce accurate portrayals of 
the wall shape. Even for E = 0.9 the maximum error from the true wall is estimated 
to be less than 3 x lop3 and the series are much more accurate in the other cases 
shown here. 
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FIG. 1. Streamlines of the flow for s=O.l. The contours shown are for Y equalling: (a) 0, (b)0.3, 
(c)0.6, (d)0.9, (e) 1.2, and (f) 1.5. 

The field velocities may also be simply computed through derivatives of @ or Y. 
However, since the velocities depend on the derivative of @ or Y, their series are 
more slowly convergent than the original ones. In the case of a truncated series less 
accurate answers for the velocities can be the result. Here, for small E there is no 
problem, but as E is increased the truncated series for velocities fail to converge to 
an answer for field points on or near the wall and x being near 7t. 

This difficulty was dealt with by using a numerical differentiation scheme referred 
to as Richardson extrapolation [ 131. By this method the series themselves are not 
differentiated, rather the function (let us say, Y) is evaluated on a sequence of 

FIG. 2. Streamlines of the flow for ~=0.3. The contours shown are for Y equalling: (a)O, (b) 0.3, 
(c) 0.6, (d) 0.9, (e) 1.2, and (f) 1.5. 
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FIG. 3. Streamlines of the flow for F = 0.6. The contours shown are for Y equalling: (a) 0, (b) 0.3, 
(c)0.6, (d)0.9, (e) 1.2, and (f) 1.5. 

points and the derivative is extrapolated by iteration. This proved to be most 
successful as gauged by the rapid convergence of values in the iteration matrix. 

The ability of this scheme to produce accurate estimates of the field velocities can 
be judged by comparison with the results from [6]. Three points on the wall were 
chosen for comparison: (0, E), (7c/2,0), and (rc, --E). Wall points were chosen 
because their velocities are the most difficult to evaluate. Due to the exponential 
dependence on y of the terms in the trial solution this is especially so in the region 
where the wall lies below y = 0. The comparison can be found in Table II and as 
can be seen the present technique produces answers that are correct to within four 
percent of the actual answers. 

FIG. 4. Streamlines of the flow for E = 0.9. The contours shown are for Y equalling: (a) 0, (b) 0.3, 
(c)0.6, (d)0.9, (e) 1.2, and (f) 1.5. 
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TABLE II 

Comparison of Wall Speeds Produced by Direct Variation and 
Euler Transformed Extended Perturbation Series 

Direct variation Euler extended series 

E=o.l 
Q(0, c) = 1.099759254 1.099759254 

Q(n/2,0) = 0.995028967 0.995028967 
Q(n, -E) = 0.900257283 0.900257282 

ECO.3 
Q(O,E)=1.294111792 1.294111850 

Q(n/2,0) = 0.957225365 0.957225440 
Q(n, -E) = 0.707147763 0.707147813 

E = 0.6 
Q(0, E) = 1.560852206 1.561042966 

Q(ir/2,0) = 0.850578434 0.850428223 
Q(K, -8) = 0.455476411 0.455612276 

E=0.9 
Q(0, E) = 1.771863368 1.793803497 

Q(n/2.0) = 0.722255248 0.719762966 
Q(n. -8) = 0.279485804 0.270335076 

Figures 5-8 show the fluid speed Q for the streamline values used in the first set 
of plots. It can be seen in Fig. 8 that for E = 0.9 the computed velocity on the wall 
near x= rr is not monotonic as we know it should be. The periodic wiggle that 
appears in the solution is characteristic of the shortest period Fourier component 
used in the approximating sequence. 

FIG. 5. Fluid speeds for E = 0.1 along the streamlines Y equalling: (a) 0, (b) 0.3, (c) 0.6, (d) 0.9, 
(e) 1.2, and (I) 1.5. 
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FIG. 6. Fluid speeds for E = 0.3 along the streamlines Y equalling: (a) 0, (b) 0.3, (c) 0.6, (d) 0.9, (e) 1.2, 
and (f) 1.5. 

,” 

oo.ooo.20 o.uo 0.60 0.80 1.00 

X/T 
FIG. 7. Fluid speeds for ~=0.6 along the streamlines ‘P equalling: (a) 0, (b) 0.3, (c) 0.6, (d) 0.9, 

(e) 1.2, and (f) 1.5. 
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FIG. 8. Fluid speeds for E =0.9 along the streamlines Y equalling: (a) 0, (b) 0.3, (c) 0.6, (d) 0.9, 

(e) 1.2, and (f) 1.5. 
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4. CONCLUSIONS 

A numerical solution, using the direct variational method, was found for the 
problem of plane potential flow past a sinusoidal wall of finite height. The advan- 
tage of this solution over that of the computer-extended series solution previously 
published is that it requires relatively few coefficients to be computed and yet still is 
capable of producing accurate streamlines and field velocities for wall heights of 0.9 
or less. Having determined the coefficients of Q, and U, and using the 
straightforward techniques described here, it is a simple matter to find the 
streamlines or the fluid speed at any point in the flow field. 

Though the direct variational method leads to ill-conditioned matrices for large 
wall heights this is not a true impediment in this particular problem. The adverse 
pressure gradients that can be deduced from the fluid velocity plots indicate that 
even for E = 0.9 any amount of viscosity will probably cause the flow to separate on 
the wall. Thus the physical approximations truly fail before the numerical method 
does. 

The advantage of this technique over the finite element approach is that it is not 
necessary to predetermine which points in the flow-field are of interest. Therefore if 
this datum is being used as input to some other program, as it currently is, it is 
more easily attained for any random field point. Also because this method is 
straightforward it requires less programming than the finite element scheme. 

The direct variational method has less advantage over a boundary integral 
method in solving this problem. Boundary methods for solving Laplace’s equation 
can cope fairly easily with the geometry of the wall and the semi-infinite domain. 
They are certainly much more flexible in the sense that they can be used in 
geometries where the use of the direct variational method would be futile. But I do 
believe that in this case the actual implementation of the direct variational method 
is more straight forward. This is strictly fortuitous: the geometry leads to a series 
solution that is a term-by-term solution of the field equation and far-field boundary 
condition. Too, the solution here is a truncated series that is easy to manipulate 
and use, and perhaps more easily interpreted in a physical way than the matrix of 
numbers that would come from a boundary element method. This author is 
unaware of any published work using this method to solve this problem. 

APPENDIX A: DERIVATION OF THE GOVERNING EQUATIONS FROM 
THE VARIATIONAL PRINCIPLE 

Starting with Eq. (6), and recalling Eqs. (1) and (2) 

u= l+@, and ll=@, (Al) 

the expression for J becomes 
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Using Leibniz’s rule and the periodicity of the flow it may be deduced that I( I s a @.dydx= -J’* @(x,scosx)ssinxdx t.43) 
-n c cos x -?I 

and therefore 

s 
n 

4 [@;+ @;I dy dx - @(x, E cos x) E sin x dx. (A41 
--A 

Taking the first variation of J by means of the commonly used “6” operator one 
finds 

Integrating by parts and again making use of Liebniz’s rule and the periodicity of 
the flow reveals 

- s n [@,,+@,ssinx+ssinx]6@ dx 
-IL .I: = c cos x 

+JZ Qy6rf dx (A61 -77 I’ = I: cos r 
For the variation of J to be zero, either 6@ is zero or 

@,., + Qvv = 0, -rc<x<iT,&cosx<y<co, (A71 

cDv + @,E sin X + E sin X = 0 y=ECOSX, --715X<& - (‘48) 

Qi,.+O JJ-,a, -Nixon. (A91 

Due to the periodicity of the flow these are the governing equations as stated in 
Eqs. (3)-(5). 
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